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Abstract-Temperature distributions in a straight fin of rectangular profile (or in a cylindrical fin) with 
uniform and non-uniform internal heat-generation characteristics and non-uniform heat transfer 
coefficients are derived analytically. The heat transfer coefficient is assumed to be a power function of the 
difference between the temperature of the fin and that of the fluid surrounding it. The power of this function 
is taken as being equal to - 1, 0, 1 and 2. Non-unifo~ internal heat generation is assumed to depend on 
the fin temperature and this dependency is expressed in a polynomial equation up to the third degree. The 
results obtained for uniform internal heat generation are also presented in tabular and graphical forms 
and an interpolation method is proposed to determine the fin temperature and the fin effectiveness if the 

foregoing power is a fraction between - 1 and 2. 

INTRODUCTION 

ANALYTICAL studies dealing with the determination 
of the temperature distribution in a fin with internal 
heat generation are rarely to be found in the literature 
[l-5]. This determination is of practical significance 
in the field of nuclear enginee~ng [l] and of scientific 
measurements [6] (i.e. hot-wire anemometers and 
resistance temperature transducers). 

Assuming that the internal heat generation and heat 
transfer coefficient are uniform, Minkler and Rouleau 
[i] analytically derived the temperature distribution 
in rectangular and t~angular fins, and Liu [Z] those in 
optimum rectangular and circular fins. Hung and 
Appl [3] presented approximate analytically cal- 
culated temperature distributions in the fins with tem- 
perature-dependent thermal properties and internal 
heat generation. 

For most practical applications, the heat transfer 
coefficient is not uniform but a power function of the 
difference between the temperature of a heat trans- 
ferring surface and that of the fluid surrounding this 
surface. It is expressed by 

h = af?” (1) 

in which a and n are constants. Typical values for n 
are -0.25, 0.25 and 2 for film-type condensation, 
natural convection and nucleate boiling, respectively. 

The object of this work is the analytic derivations 
of the temperature distributions in a straight fin of 
rectangular profile or in a cylindrical fin with uniform 
and non-unifo~ intemai heat-generation charac- 
teristics. To this end the heat transfer coefficient is 
taken as that given in equation (1) wherein n = - 1, 
0, 1 and 2. 

Initially, internal heat generation in the fin is 

assumed to be constant and the tem~rature dis- 
tributions in the fin and the fin effectiveness are deter- 
mined as functions of dimensionless variables, and the 
results obtained are presented in graphical and tabular 
forms. An interpolation method is suggested for the 
approximate determination of the temperature dis- 
tribution in the fin and the fin effectiveness if n is a 
fraction between - 1 and 2. For these values of n, the 
temperature distribution in the fin cannot be ana- 
lytically derived even for the simple condition in which 
no internal heat sources exist in the fin [7]. 

As a second step internal heat generation in the fin 
is assumed to be de~ndent on the temperature of the 
fin itself. This dependency is expressed in a poiynomial 
equation up to third degree and the temperature dis- 
tributions in the fin are derived herewith. 

DIFFERENTIAL EQUATION OF 
TEMPERATURE DISTRIBUTION 

A straight fin of rectangular profile or a cylindrical 
(i.e. pin) fin is now considered. For the analysis of 
such a fin, the following assumptions are made : one- 
dimensional steady-state heat conduction through the 
fin, constant thermal conductivity of the fin material, 
negligible heat transfer from the fin tip and a constant 
cross-sectional area for the fin. Internal heat gen- 
eration in the fin is either constant or dependent on 
the temperature of the fin. The temperature of the 
fluid surrounding the fin is constant. The origin of the 
space coordinate x is at the fin base and positive x is 
toward the fin tip. The straight fin is infiniteIy long in 
the longitudinal direction. A unit length of this fin 
in this direction is being considered here. The heat 
transfer coefficient is given by equation (1). 

For the assumptions made, the non-dimensional 
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NOMENCLATURE 

A cross-sectional area of a fin [m”] t 
a a given constant [W m-* K++ “1 KdmW3mW ;Tl ;es’pe~ti;e;;]K-2 3 3 

a ,, . . . , a, constants defined in the text s &, . . . , S7 constants defined in the text 
Bi modified Biot number at the base of a fin T dimensionless tem~rature 
b modified fin parameter t temperature [K] 
C integration constant U half fin thickness [m] 
d, d, constants defined in the text W a constant defined in the text [m] 
er...,e6 constants defined in the text X dimensionless space coordinate 
&‘(~/a) Legendre’s normal elliptic integral of the x space coordinate [m] 

first kind Y, 2 constants defined in the text. 

f fin effectiveness 
G rate of heat flow from a fin [WJ 

Greek symbols 
g, . . . ,g3 constants defined in the test 

W m-‘, W me3 K-l, W me3 Km2 
; 

modular angle [rad] 

and W m’-3 Ke3, respectively] 
a root of a polynomial equation 

h heat transfer coefficient w rn--* K-‘1 
y, . . . , y3 constants defined in the text 
B 

K thermal conductivity of the fm material 
the difference between the tem~rature of 

p m-’ K-‘J 
a fin and that of the fluid surrounding 

L fin length [m] 
it at point x [K] 

N, m constants defined in the text P amplitude [rad]. 

N generation number 
n a given constant Subscripts 
P circumference of a cylindrical fin [m] b refers to the fin base (i.e. x = 0) 
r a constant defined in the text e refers to the fin tip (i.e. x = L) 

Q internal heat generation [W ml”] f refers to the fin 

9,.~-*44 constants defined in the text i anindex(i= 1,2,3...) 
s , , . . , S3 constants defined in the text V refers to the fluid. 

differentiai equation of the tem~rature distribution in which 
in the fin then becomes w--w for the straight fin (9) 

The boundary conditions are expressed by 

T = Tb = Cl,/& forX=O (3) 

and 
(21 

W= A/P for the cylindrical fin. (IO) 

%dT o 
-....-= 

LdX 
forX= 1. (4) 

The non-dimensional parameters used in equations 
(2H4) are defined as 

T = 6/t?, 01 

X=x/L (6) 

(7) 

(8) 

In accordance with the first boundary condition 
expressed in equation (3), the temperature difference 
at the fin base is equal to f?,. The second boundary 
condition explicitly implies that no heat transfer takes 
place at the fin tip. 

In order to solve equation (2), L, a, W, K, Q and n 
are assumed to be known. 8, is the boundary value. Qe 
is not an unknown value, but it can be determined 
only after the equation has been solved. By definition 
it is equal to Ob/Tb. The foregoing implies that the 
values of b and N in equation (2) can be determined 
before solving it and the value of Tb after solving it. 

The value of b given by equation (7) is the modified 
fin parameter. For the condition where n = 0 (i.e. a 
constant heat transfer coefficient), the square root of 
b (i.e. fin parameter or aspect number) is widely used 
in studies dealing with extended surfaces. 

The value of N given by equation (8) is the gen- 
eration number. It is the ratio of the total heat gen- 
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FIG. 1. Tb as a function of b and N for n = - 1 and 0. 

erated in the fin to the heat that would be dissipated 
from the fin if all of the fin was at the base temperature 
[I]. Accordingly, if N = 1 then all the heat generated 
in the fin is transferred to the fluid surrounding the 
fin, the temperature of the fin becomes uniform and 
no heat is conducted into the fin at its base since 
d7’jdX = 0. Therefore, it follows from the foregoing 
that the generation number can only vary between 0 
and I. For N = 0, there is no internal heat generation 
in the fin, and for N = 1 internal heat generation in 
the fin is maximum. 

SOLUTION OF THE DIFFERENTIAL EQUATION 

FOR UNIFORM HEAT GENERATION 

In the case where n = - 1 
In this particular case, the right-hand side of equa- 

tion (2) and the second term on the left-hand side 
are constants. The solution of this equation, which 
satisfies the boundary conditions expressed in equa- 
tions (3) and (4), is then a straightforward matter and 
the dimensionless temperature distribution in the fin 
is given by 

. (11) 

From the above equation T,, (or 8,) is calculated using 
the condition that T = T, = 1 for X = 1 

Thus it follows from equations (11) and (12) that T 
has only one value if the values of b, N and X are 
fixed. The dimensionless temperature at the fin base, 
Th, is shown as a function of b and N in Fig. 1. In this 

figure, the asymptotic behaviour of Tb is obvious. 
In accordance with equation (12), an increment in 
b(1 - N)/2 increases T,,. However, the maximum value 
ofb(l-N)/2shouldbelessthan l.If(l-b(l-N)/2) 
is zero, 0, also becomes zero (i.e. 0, = 
t?,(l -b(l - N)/2)), and T (or TJ is not defined. The 
foregoing implies that for a given value of N, the 
maximum value of b is dete~ined by one of the two 
following inequalities derived with equation (12) and 
with the definition of the generation number : 

forO,<N<l (13) 

O<b<co for N=l. (14) 

For n = - 1, the heat flux on the surface of the fin 
all along its length is constant and is equal to a (see 
equation (1)). In accordance with equation (1 11, the 
temperature in the fin is constant when N = 1. 

. 
In the case where n = 0 

In this particular case, the heat transfer coefficient 
is const~t and equation (2) becomes a linear second- 
order differential equation with constant coefficients. 
The right-hand side of the equation is constant. The 
solution of the equation is taken from an appropriate 
textbook [8]. Thus the dimensionless temperature dis- 
tribution in the fin, which satisfies the boundary con- 
ditions expressed in equations (3) and (4), is given by 

T- T 
- b 

(1-N) ‘Osh iJb(l-x)l 
cash ,/b 

(15) 

From equation (15) T,, (or 0,) is determined using the 
condition that T = 1 for X = 1 
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It follows from equations (1.5) and (16) that T has 
a single value if the values h, N and X are fixed. The 
dimensionless temperature at the fin base, T,,, is shown 
as a function of b and N in Fig. 1. In this figure the 
asymptotic behaviour of T, is obvious if 0 < N < 1. 
For a given value of N and for comparatively small 
values of b, an increment in b increases T,. If b is 
increased beyond a certain value, T,, approaches IjN. 
If N = 0 the magnitude of T, is not restricted, as 
can be deduced from equation (16). It follows from 
equation (15) that the temperature in the fin is con- 
stant for N = 1 (i.e. T = T, = I). 

Contrary to the case analysed for IZ = - I, no 
restriction applies to the magnitude of h for 0 d N < 1 
if n = 0. 

In the case where n = 1 
In order to calculate the dimensionless temperature 

distribution in the fin for this case, equation (2) is 
integrated twice. The first integration of this equation 
can be carried out in accordance with the procedure 
explained in ref. 171. Omitting the details, the result of 

In order to utilize equation (ZI), only p = p(T), M 
and 01 should be calculated since pi, - p(Tb). For this 
purpose the roots of the cubic equation in equation 
( 18) are required. These roots are expressed by 

8, = 1 (22) 

and 

fl2.3 = -0.5&(3NT,Z-0.75)0.5. (23) 

For the evaluations of b, and fi3, the value of Tb 
should be known. This value is determined using the 
equation given below, which is obtained from equa- 
tion (21) using the condition that ,U = pe for X = 1 

mF( &hx) - mq p&x) = 1. (24) 

If all the three roots of the cubic equation are real and 
p, > f12 > b3, the formulae to calculate p(T), m and 
CI are presented below. These formulae are adapted 
from those given in ref. [9] and their derivations are 
therefore omitted here 

GW 
this integration including the determination of the 
integration constant (using the boundary condition m = 2{Y(P, -83) -a.S (26a) 

given in equation (4)) is presented below for all values 
of n excluding n = - 2 cL = arcsin ~~~~~~ (27a) 

dT ____ = - 
dX i 

;$2 T,“(T’“+2’ p,, and pL, are obtained from equation (25a), noting 
that {L = orb for T = Th, p = pc for T = T, = I and 

0.5 

I 

B,= 1 
+(n+2)NTjj+“(l-T)-II) . (17) 

(28a) 
For rr = 1 and after rearrangement, equation (I 7) 
reduces to 

fib = aresin ~(~~‘~ 

pe = arcsin 0 = 0. (29a) 
dT . 

~~{T3+3~T~~I - T)- l)p5 
= - d,y (18) For & = 0, F( &a) becomes zero ; accordingiy equa- 

tion (24) reduces to 

in which 

2b 
y=3T,. 

mF( /.&/a) = 1. (304 

(19) If the cubic equation has one real and two complex 
roots, the formulae to calculate g(T), m and IX are 

The integration of equation (I 8) yields [9] 
T-r-M cot z 

F&Q&) = -XfC (20) ’ = arccoS (-- > T-r+ M tan Z forO<pGx 

where R&+x) is Legendre’s normal elliptic integral of (25b) 

4YM’ -“.5 m = --(tan Z+cot Z) --- 
the first kind. Its value is determinable if the amplitude 
p and the modular angle c( in it are known. p is a 

1 1 sin3 (22) (26b) 
function of T and 01 is a constant. In ref. [ 101 F( p/a) 
is tabulated for 0 < ~k < n/2, and is given as an infinite 
series for 0 < p < n in refs. [7, 91. 

cf=z (27b) 

After the determination of the integration constant in which 
C in equation (20) (using the boundary condition 
expressed in equation (3)), the dimensionless tem- for0 < 22 < 7r. 
perature dist~bution in the fin becomes 

tan (22) = $& (31) 

mF(p,lu) = - X+mF(p&). (21) In order to derive A4 and Y in p, m amd 01, the cubic 
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equation in the denominator of equation (18) is ex- 

pressed as 

y(T-l)(T*+T+l-3NT,2) 

= y(T- 1) {(T-r)*+M*}. (32) 

The last term on the left-hand side of equation (32) 
should be identical to the last term on the right-hand 
side. This yields 

r = -0.5 (33) 

M = (0.75 - 3NT,Z)O.5. (34) 

By definition, M should always be a positive number 
and r a real number. From equation (25b) pr, is pre- 
dicted using the condition that p = ~(s for T = T,, 

> ’ 
(28b) 

In order to calculate pLe, first the values of r and T for 
X = 1 (i.e. r = -0.5 and T, = 1) are introduced into 
equation (25b). Thereafter the resulting numerical 
value (i.e. 1.5) both in the numerator and the denomi- 
nator of the fraction in this equation is replaced by 
M/tan (22) as calculated with equation (31) (i.e. 
/I, = 1 and r = -0.5). If tan (22) and cot Z in the 
present equation are expressed as a function of tan Z, 
the equation produces the value of p, after rearrange- 
ment 

p, = arccos - 1 = 7c. (29b) 

For p(e = K, equation (24) reduces to 

mF( Pb/cX) - mF(a/cr) = 1. W’b) 

Relative to equations (25)<30), the a-versions of 
the equations are valid if the cubic equation has three 
real roots and 1 > /I2 > B3. The b-versions of the 
equations are valid if the cubic equation has one real 
and two complex roots. The c-versions of the equa- 
tions will apply in the case where n = 2. 

If the cubic equation has three real roots and if 
one of these roots is greater than 1, the solution of 
equation (2) is again expressed in equation (21) ; this 
solution however appears to be trivial [9]. Therefore, 
the formulae to predict p(T), m and CL are not given 
here. The foregoing will be further clarified whilst 
presenting T, as a function of b and N. 

In order to calculate the dimensionless temperature 
in the fin, only the value of Tb is required. For the 
determination of Tb the following procedure is 
adopted. A value for Tb is assumed so M or /I2 and 
p3 are then known. The value of m, CL and pb is 
predicted with equations (26)(28) respectively. 
Using the values of a and pb, F&/x) is determined 
from the tabulated values of F(p/cr) (or from the 
analytic expression of F(p/c()). Also F(pb/a) is deter- 
mined from equation (30). The value of Tb is iterated 
until the calculated two F(pb/c() values are identical. 

Having found T,, the evaluation of T for a given 
value of X is carried out with equation (21). To this 

end, first F(&) is determined with this equation since 

the values of m, ct, X and F(p&) are known. There- 
after the value of p, which satisfies this &/a), is 
obtained from the tabulated values of F(@) or (from 
the analytic expression of Q/a)). T is then predicted 
with equation (25). 

For the evaluation of X for a given T (i.e. 
Tb > T > l), p is first solved from equation (25) 
thereafter F(p/cr) is solved from the tabulated values 
of F(&Y) (or from the analytic expression of Q/E)), 
and finally X is solved from equation (21). The fore- 
going method seems simpler than the previous one. 

If the values of b and N are fixed, the value of Tb 
is determined. Since T, > T 2 1, T has only a single 
value if the values of b, N and X are fixed. The values 
of T for X = 0, 0.25,0.50 and 0.75 were calculated as 
a function of b and N. The results obtained are tabu- 
lated in Table 1. For X = 1, T = 1. The values of N 
were taken equal to 0,0.25,0.50 and 0.75. For N = 1, 
T = Tb. The calculations were carried out on a pro- 
grammable desk calculator with 224 program steps. 
In order to predict F(p/cc), the analytic expression of 
F(&Y) was used. This expression is an infinite series. 
For large values of CL and p, the Gauljsche trans- 
formation [9] was used to reduce the values of c1 and 
p ; consequently the number of terms needed to cal- 
culate the foregoing series was very small. If CI and p 
are greater than 89x/180 rad and if F( p/a) is evaluated 

from the tabulated values of Q/a), the GauDsche 
transformation is also needed since F(n/2/x/2) is infi- 
nite. 

The dimensionless temperature at the fin base, Tbr 
is shown as a function of b and N in Fig. 2. In this 
figure, the asymptotic behaviour of Tb is obvious if 

1 > N > 0. For a given value of N and for com- 
paratively small values of b, an increment in b increases 
Tb. If b is increased beyond a certain value, Tb 
approaches asymptotically to l/,/N (see also Table 
1). For l/,/N > Tb > 0.5/JN, b2 and /13 are real roots 
and 1 > /I2 > p3 (see equations (22) and (23)). If 

Tb = l/,/N, /I2 = 1, and F(p/cr) and F(pb/c() become 
infinite (i.e. p = pb = CI = 7c/2). For /I, = /I2 = 1 the 
dimensionless temperature which is obtained from 
equation (25a) reduces to 

T=BI-P2sin2P=1, 
1 -sin’ p (35) 

Thus the temperature in the fin is constant and conse- 
quently no heat is conducted into the fin at its base. 
Accordingly Tb is always less than l/JN and /I2 less 
than 1. For N = 0, pb given by equation (28b) becomes 

(36) 

In accordance with equation (36) no restriction 
applies to the magnitude of Tb for N = 0 since pb 
varies between R and 0 if 1 < Tb < co and a is equal 
to 7r/12. 

For N = 1 and Tb = 1, /I2 is equal to 1 and the 
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dimensionless temperature in the fin is again expressed 
in equation (35), which states the fact that the tem- 
perature in the fin is constant. 

Zn the case where n = 2 
For this case, the first integration of equation (2) is 

given by equation (17). After rearrangement and when 
n = 2, this equation reduces to 

in which 

b 
y1=2T,z. (38) 

The integration of equation (37) and the relationship 
required to determine Tb is again given by equations 
(21) and (24), respectively. In order to utilize these 
equations, p(T), m and o! in equation (21) should be 
known. For the determinations of p(T), m and E, the 
roots of the polynomial equation in equation (37) 
are needed. fi,, one of the roots of this polynomial 
equation is always equal to 1, therefore the poly- 
nomial equation is reduced to 

y,(T- 1)(T3+ T2+ T+ 1-4NT;) = 0. (39) 

The roots of the cubic equation in equation (39) can 
be calculated with the formulae given in ref. [l 11. 
Therefore, in accordance with these formulae, this 
cubic equation has one real and two complex roots 
(since d expressed in equation (41) always yields a 
positive real number). The rea1 root is given by 

p2= -&+d-_: 

in which 

(40) 

+ ;(r; -4NTf+ &T5>‘;;. (41) 

Having found 8 I and jIZ, p(T), m and 01 can be derived 
from the formulae given in ref. [9] 

p = arccos for 0 6 ii < ?r 

%a9 -___ 
m = {-&JlWLl(Pl-82)~0.5 

(2W 

(26~) 

in which 

M = arcsin fig 

ag = (1 +a:)-0.5 

(27c) 

(42) 

(43) 
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FIG. 2. Tb as a function of b and N for n = 1 and 2. 

a6 = fiI-al +a2a4 

a5 = Br -aI -a& 

a4 = a3+(a:+1)0.5 

(45) 

(46) 

(47) 

4+(IYI-ad(B2--ad 
a3 = 

a&J, -LL) . 
(48) 

In order to derive a, and a, in a3-a9, the fourth- 
order polynomial equation in equation (37) is ex- 
pressed as 

y,(T- l)(T-B,){TZ+(B2+ l)T+B:+B*+ 1) 

= r,(T-l)(T-B2)((T-a,)*+a:}. (49) 

The last term on the left-hand side of equation (49) 
should be identical to the last term on the right-hand 
side. This yields 

aI = -(B2+ 1)/2 (50) 

a, = (3/I:+2fi,+3)“.5/2. (51) 

By definition, a2 > 0 and y,a, < 0. As will be 
explained later p, m, a and a ,-a, are valid if fiz < 1. 

From equation (25~) pb is evaluated noting that 
p = p,, for T = Tb 

pb = arccos (28~) 

From equation (2%) p, is determined using the con- 
dition that p = p(e for T = T, = 1 ; introducing this 
value of T,, the value of /I, and aca, given by equa- 
tions (46k(43) into equation (25~) and after the 
rearrangement, the latter equation yields 

pL, = arccos - 1 = 7~. (29c) 

For n(e = rr, equation (24) reduces to 

mF( p&t) - mF(n/cc) = 1. (3Oc) 

The determinations of Tbr T for a given X and X 

for a given T are carried out with the procedures 
adopted in the case where n = 1. As noted earlier, the 
c-versions of equations (25H30) apply in the case 
where n = 2. 

If the values of b and N are fixed, the value of T, 
is determined. Since Tb 3 T 2 1, T has one single 
value if the values of b, N and X are fixed. Values of 
T for X = 0, 0.25, 0.50 and 0.75 are tabulated as a 
function of b and N in Table 2. Here N was taken 
equal to 0, 0.25, 0.5 and 0.75. 

The dimensionless temperature at the fin base, Tb, 
is shown as a function of b and N in Fig. 2. In this 
figure the asymptotic behavior of Tb is obvious if 
1 > N > 0. For a given value of N and for com- 
paratively small values of b, an increment in b 
increases T,,. If b is increased beyond a certain value, 
the value of T,, approaches asymptotically to the value 
of d, expressed in the equation 

d, = (N)-“3. (52) 

If T,, is smaller than d,, /I2 is smaller than 1. If Tb 
equals d,, /I2 is equal to 1 and a3 given by equation 
(48) is not defined ; consequently a9-a4 expressed in 
equations (42)-(47) are also undefined. Therefore, the 
temperature distribution in the fin cannot be predicted 
with equation (21). As stated previously, Tb = 1 when 
N = 1. It follows from equation (41) that the con- 
dition in which T, = d, is identical to the condition 
that N = 1. The foregoing implies that the tem- 
perature in the fin is constant if Tb = d,. Consequently 
T,, is always less than d, and /I2 less than 1. If N = 0, 
fi2 is equal to - 1 and a to n/4, and pr, given by 
equation (28~) reduces to arccos (-l/T,) which 
implies no restriction on the magnitude of Tb (i.e. 
1 < T,, < co). It is concluded from the foregoing that 
l>~2>-1if1>N>0. 

Some values of T are missing in Table 2. This 
was because the desk calculator used to carry out the 
calculations computed internally using each number 
as a lo-digit mantissa and a two-digit exponent of 10 
(see equations (47) and (48) ; /3, N p2). In order to 
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determine these values, a double precision computer 
is required. 

Fin cflectiveness 
The fin effectiveness is a proper criterion for the 

evaluation of the performance of a heat transfer sur- 
face with and without a fin. It is defined by 

where the numerators give the heat flux and the 
denominators the heat flux at the surface in the 
absence of the fin. 

In order to calculate f for any value of n excluding 
n = -2, the temperature gradient given by equation 
(17) is introduced into equation (53). After rearrange- 
ment and considering that T = Tb for X = 0, the latter 
yields 

in which 

Bi = hb W/K = a%: W/K. (55) 

The definition of the Biot number given in the litera- 
ture is identical to that expressed in equation (55). for 
the straight fin but different from it for the cylindrical 
fin. 

The fin effectiveness is calculated with equation (54) 
after T, is determined either with an analytic method 
or with a numerical method. 

As noted previously, Tb has only one value if the 
values of b, N and n are fixed. It thus follows from 
equation (54) that fJBi also has one value if the 
values of b, N and n are fixed. Therefore, taking N as 
a parameter (i.e. N = 0, 0.25,0.50 and 0.75), f JBz’ is 
plotted against b in Fig. 3 for n = - 1 and 0 and in 
Fig. 4 for n = I and 2. For N = 1, the fin effectiveness 
is zero. This is deduced either from equation (53) (i.e. 
dT/dX = 0 for X = 0) or from equation (54) (i.e. 
T, = I). 

Figures 3 and 4 reveal the conditions that for given 
values of b, N and Bi, an increase in n decreases the 
fin effectiveness and that for given values of b, n and 
Bi a decrease in N increases tin effectiveness. 

It follows from the definition of the fin effectiveness 
that for the cylindrical fin and the straight fin of unit 
length in the longitudinal direction, the rate of heat 
flow conducted to the fin from its base is equal to 
A&,hbf. The rate of heat flow from the fin to the fluid 
surrounding it is then given by 

G = A(t?,h,f+ QL). (56) 

E~tra~~~atio~ of the results obtained 
As can be deduced from the foregoing, T is a func- 

tion of b, N, n and X. Accordingly, it is only a function 
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FIG. 4. fJBi as a function of b and N for n = 1 and 2. 

of n if the values of b, N and X are fixed. Therefore, 
if n is a fraction between - 1 and 2, the value of T for 
this n can be determined with interpolation using the 
values of T calculated for n = - 1, 0, 1 and 2 and for 
given values of b, N and A’. In Fig. 5, this interpolation 
method is illustrated for the prediction of Tb for 
n = -0.5, 0.4 and 1.6 whilst b = 1.2, N = 0.15 and 
x= 0. 

Since f ,/Bi is a function of b, N and n, a procedure 
similar to the foregoing interpolation method can be 
used for the determination of fJBi if n is a fraction 
between - 1 and 2. 

In order to further verify the method proposed, the 
following procedure was carried out. First for some 
randomly selected values of b, N and n, the values of 
T,, and off JBi were calculated with the method. (For 

the design engineer, the evaluation of Tb and of 
fJBi are probably of the most practical significance.) 
Thereafter these values were compared with those 
predicted with a numerical method using equations 
(2) and (54). The results obtained are tabulated in 
Table 3 in which the columns designated I give the 
errors in predicting Tb and those designated II the 
errors in predicting f ,/Bi. The error was based on the 
value calculated with a numerical method, i.e. the 
fourth-order Runge-Kutta procedure. If both, the 
value of Tb and of f,/Bi are required, it is sufficient 
to determine T,, since f,,/Bi can be evaluated with 
equation (54) if Tb is known. In this case, the error in 
predicting f,/Bi improves, as can be deduced from 
the columns designated III in Table 3. The errors 
given in this table seem acceptable for most practical 



1474 H. C. ONAL 

FIG. 

t 
Tb N -0.15 

b :1.2 

I I I 
I I I 

1 III I II “, 
-2 -1 0 1 2 

5. Determination of Tb if n is a fraction between - 
and 2. 

applications. If n is a fraction between - 1 and 0 and 
b is greater than 2/(1 -N) (see equation (13)), then 
the method proposed should fail to yield Tb or f JBi. 

SOLUTION OF THE DIFFERENTIAL EQUATION 

FOR NON-UNIFORM HEAT GENERATION 

A cubic relationship for heat generation 
Internal heat generation in the fin is assumed to be 

dependent on its temperature and this dependency is 
expressed by 

Q = gd:+g&+g,h+g (57) 

where g to g3 are given dimensional constants. With 
proper algebraic manipulations, equation (57) can be 
reduced to 

Q = S,B3+S26*+S,0+S (58) 

in which 

s3 = 93 (59) 

s*= 3g,t,+g2 (60) 

s, = 393C+2g*L+g, (61) 

s = gst:+g*t,2+g,t,+g. (62) 

In order to determine the temperature distribution 
in the fin with non-uniform internal heat generation, 
equation (2) will first have to be solved. (The boundary 
conditions given by equations (3) and (4) hold good.) 
To this end, Q expressed in equation (58) is introduced 
into N defined by equation (8). Using this N and after 
rearrangement, the first integration of equation (2), 
which satisfies the boundary condition given in equa- 
tion (4), yields 

dT 
(@-@+*)- q4T4-q3T3-q,T*-q,T+2C) 

= -dX 

(63) 
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where 
bWS, 

q4 = 
2aT$t- 2, (64) 

q3 = 26 WS,/{3aT,0rP “} (65) 

q2 = S,bW/(aG) (66) 

q, = 2b WST,/{a@’ ‘I} (67) 

q = 2b/{ T,(n + 2)} (68) 

c = (q,+q,+qz+q,-4)/2. (69) 

and q-q4 are dimensionless constants. 
With the exceptions of the conditions that 

g3 = g2 = 0 and n = - I and that g3 = gZ = 0 and 

n = 0, the solution of equation (63) is again given by 
equation (21). T,, is determined from equation (24). 
In order to utilize equations (21) and (24), p(T), cr and 
m in equation (21) should be calculated. These depend 
on the roots of the polynomial equation in the 
denominator of equation (63) and can be evaluated 
with the formulae presented herein if the numerical 

values of g, g,, g2, g3, t,, O,, K, L, a, n and W are 
known. One of the roots of this polynomial equation 

is always equal to 1. 
If the polynomial equation is a cubic equation, then 

the conditions that it has three real roots and 
I > b2 > b, and that it has one real and two complex 
roots are of practical significance as discussed pre- 
viously for the case that n = I and Q is a constant. 
First the cubic equation is reduced to 

y2[T3+ezT2+e,T+e] = 0 (70) 

where y2 and e-e2 are dimensionless constants. 

If the cubic equation has three real roots and 
1 > b2 > fl,, p(T), m and c( are given by equations 
(25a), (26a) and (27a), respectively. The value of y in 
equation (26a) is equal to y2 in equation (70). Equation 
(30a) and p,, and p. expressed in equations (28a) and 
(29a) hold good. 

If the cubic equation has one real and two complex 
roots, p(T), m and LX are given by equations (25b), 
(26b) and (27b), respectively. The value of y in equa- 
tion (26b) is equal to yZ in equation (70). M and r in 
p, m and LY are determined by establishing an equation 
similar to equation (32). Equation (30b) and pLb and 
pL, expressed in equations (28b) and (29b) hold good. 

If the foregoing polynomial equation is a fourth- 
order equation, it is first reduced to 

y,[T4+e,T3+e,T2+e,T+e,] = 0 (71) 

where y3, e3-eh are non-dimensional constants. One 
of the roots of equation (71) is 1. If internal heat 
generation in the fin is equal to zero, one of the remain- 
ing roots becomes - 1 and equation (71) reduces to 
equation (39) provided that N = 0 in the latter. There- 
fore, it is concluded that the case being dealt with is 
similar to the case in which n = 2 and Q is a constant. 
Accordingly g(T), m and a in equation (21) are given 

by equations (25~) (26~) and (27~) respectively. /I, is 
equal to 1 and b2 is smaller than p,. y, in equation 

(26~) is equal to y3 in equation (71). a, and a2 in ad- 

a, are determined by establishing an equation similar 
to equation (49). Equation (30~) and pLb and ,uL, ex- 
pressed in equations (28~) and (29~) hold good. 

The determination of the temperature distribution 
in the fin is carried out in a manner similar to that 
explained previously herein for the case wherein n = 1 
and Q is a constant. The fin effectiveness is predicted 

with equation (53). 

A linear relationship for heat generation 

If gz and g3 in equation (57) are equal to zero 
and if n = - 1 and 0, the differential equation of the 
temperature distribution in the fin (i.e. equation (2)) 
reduces to 

$+S,T=S, (72) 

in which 

S, = bO, WSJa forn = -1 (73) 

S, = bT,(l - WSja) fern= -1 (74) 

S4 = -b(l - WS,/a) forn = 0 (75) 

S5 = -b WST,/(aU,) for n = 0. (76) 

The boundary conditions expressed in equations (3) 

and (4) hold good and Q is given by 

Q = S,O+S (77) 

where S is the part of the internal heat generation 
corresponding to the condition that 0 = 0. Accord- 
ingly S, and S in this equation are positive. In equa- 
tion (75) WS,/a is the ratio of the heat flux due to a 
part of the internal heat generation to the total heat 
flux at location x (i.e. WS,O/a,O) and it is always 
smaller than 1. Consequently S4 given by equation 
(75) is always negative. Considering now the fore- 
going, the solution of equation (72) is carried out in 
accordance with ref. [8]. This solution, which satisfies 
the boundary conditions expressed in equations (3) 
and (4) is given by equation (78) when n = - 1 

+ tan JS, sin (JS,X)} + : (78) 
4 

and by equation (79) for n = 0 

T = cash iJ-W-W> + 3, 
cash J-s, S4 

(79) 

Th is determined using the condition that T = T, = 1 
for X = 1. It is expressed in equation (80) for n = - 1 

Th = { (I- S,) (cos JS, + tan JS, sin JS4) + S,} - ’ 

(80) 
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and in equation (81) for n = 0 

T,, = 
I-& -I 

cash J-S, 
+s, 

> 
(81) 

in which 

(1 - ws/+ 
S”=--&ws, 

ws 
s, = 

aU,(l- WS,/a) 

(82) 

SUMMARY/CONCLUSIONS 

Temperature distributions in a straight fin of rec- 
tangular profile (or in a cylindrical fin) with uniform 
and non-uniform internal heat-generation charac- 
teristics and non-uniform heat transfer coefficients are 
derived analytically. The heat transfer coefficient is 

assumed to be a power function of the difference 
between the temperature of the fin and that of the 
fluid surrounding it. The power of this function is 
taken as being equal to - 1, 0, 1 and 2. Non-uniform 
internal fin heat generation is assumed to depend on 
the fin temperature and this dependency is expressed 
in a polynomial equation up to third degree. 

The results obtained for uniform internal heat gen- 

eration are reduced to tables and graphs for the con- 
venience of the design engineer. For given values of 
the modified fin parameter, the generation number 
and the power in the heat transfer coefficient, these 
graphs yield the fin effectiveness for a given value 
of the modified Biot number and the dimensionless 
temperature at the fin base. An interpolation method 
is proposed to determine the dimensionless tem- 
perature in the fin and the fin effectiveness if the fore- 
going quoted power is a fraction between - 1 and 2. 
For given values of the modified fin parameter, the 
generation number and the modified Biot number, an 
increase in the said power decreases the fin effec- 
tiveness. For given values of the modified fin 

&AL 

parameter, the said power and the modified Biot num- 
ber, a decrease in the generation number increases 
the fin effectiveness. The asymptotic behaviour of the 
dimensionless temperature at the fin base is illustrated. 

The analytic solutions presented for the second- 
order non-linear differential equations may also be 
useful in other fields of engineering. 
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DISTRIBUTIONS DE TEMPERATURE DANS DES AILETTES AVEC GENERATION DE 
CHALEUR UNIFORME OU NON ET COEFFICIENT DE TRANSFERT NON UNIFORME 

R&sum&On determine analytiquement la distribution de temperature dans une ailette droite de profil 
rectangulaire (ou dans une ailette circulaire) avec une generation de chaleur uniforme ou non et un 
coefficient de transfert thermique non uniforme. Le coefficient de transfert est suppose itre une fonction 
puissance de la difference entre la temperature de l’ailette et celle du fluide environnant. La puissance est 
prise &gale a ~ I, 1 et 2. La generation de chaleur interne est supposte dependre de la temperature de 
l’ailette et cette dtpendance est exprimte par un polynome du troisitme degre. Les r&hats obtenus 
pour la generation uniforme de chaleur sont presentis sous forme graphique et tabulte et une mdthode 
d’interpolation est proposee pour determiner la temperature de I’ailette et l’efficacite de l’ailette si la 

puissance est fractionnaire entre - 1 et 2. 
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TEMPERATURVERTEILUNG IN RIPPEN BEI EINHEITLICHER UND 
UNEINHEITLICHER WARMEENTWICKLUNG UND UNEINHEITLICHEM 

WARMEUBERGANGSKOEFFIZIENTEN 

Zusammeofassung-Es werden die Temperaturverteilungen in einer geraden Rippe mit rechteckfiinnigem 
Protil (oder in einer zylinderfiirmigen Rippe) bei einheitlicher und uneinheitlicher innerer War- 
meentwicklung und uneinheitlichem Warmeiibergangskoeffizienten analytisch hergeleitet. Es wird ange- 
no-en, da5 der Wlnneiibergangskoeffizient als Potenzfunktion der Differenz zwischen der Temperatur 
an der RippenoberlIache und der Temperatur des umgebenden Fluids dargestellt werden kann. Der 
Exponent der Funktion nimmt dabei die Werte - 1, 0, 1 und 2 an. Zur Beschreibung der uneinheitlichen 
Wilrmeentwicklung wird eine Abhlngigkeit von der Rippenoberlllchentemperatur angenommen und diese 
Abhiingigkeit durch ein Polynom 3. Grades ausgedrtickt. Die fur gleichfiinnige innere Warmeentwicklung 
gewonnenen Ergebnisse werden in tabellarischer und grafischer Form vorgestellt. Es wird ein Inter- 
polationsverfahren vorgeschlagen, mit dem die Rippentemperatur und der Rippenwirkungsgrad bestimmt 

werden kdnnen, sofern der vorab angenommene Exponent im Bereich zwischen - 1 und 2 liegt. 

PACI-IPEJJEJIEHHE TEMl-IEPATYPbI B PEPPAX C OAHOPOAHbIM I4 HEOAHOPOfiHbIM 
TEI-IJIOBbIjJEJIEHMEM ki I-IEPEMEHHbIM K03@W,I~kfEHTOM TEI-IJIOI-IEPEHOCA 

AEUIOT~~DISI-AFI~JIHTFI~CKH nonyqeHbI pacnpenenenwn TeMnepaTypbt B ~~XMOM pe6pe npnhfoyronb- 
HOrO npO@UISI(HJI&i B ~JILiHnpWKCKOM pe6pe)C OAHOpOJ@ibIM Ii HeOAHOpOAHbIM BIiyTpeHHHM TetIJIO- 

BueneHHeM H nepebfeHHbIhni K03+$w5ieHTaMH rennonepenoca. Honaraercn, STO K03+$HuneHT 

Tennonepetioca BBJIR~TCR CTeneHHoii @yHKuuefi paseocru TeMnepaTyp pe6pa u orpyxcaromefi cpenb~ c 
noKa3aTeneM crenemi pasxiblM -l,O, 1 H 2. CwiTaeTcn,qTo Heonxsopowoe BHyTpeHHee Tennoebtnene- 

HHe 3aBHCHT OT TeMnepaTypu pe6pa, 3Ta 3aBHCHMOCTb sbrpaXaeTcr nOnHHOMaMH He nbIIue TpeTbefi 

CTeneHH. I-IOJIy’IeHHbIe lX3)‘JIbTaTLd &WI OAHOpOAHOrO TeMOBbLIleJleHHll IlpeACTaBJIeHbI Ta6nwefi B B 

nwe rpa@ixon; B cnyqae,Korna nosa3aTenb creneHH ne*HT B wanasoee OT - 1 no 2,nnr onpenene- 


