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Temperature distributions in fins with uniform and
non-uniform heat generation and non-uniform
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Abstract—Temperature distributions in a straight fin of rectangular profile (or in a cylindrical fin) with
uniform and non-uniform internal heat-generation characteristics and non-uniform heat transfer
coefficients are derived analytically. The heat transfer coefficient is assumed to be a power function of the
difference between the temperature of the fin and that of the fluid surrounding it. The power of this function
is taken as being equal to —1, 0, 1 and 2. Non-uniform internal heat generation is assumed to depend on
the fin temperature and this dependency is expressed in a polynomial equation up to the third degree. The
results obtained for uniform internal heat generation are also presented in tabular and graphical forms
and an interpolation method is proposed to determine the fin temperature and the fin effectiveness if the
foregoing power is a fraction between — 1 and 2.

INTRODUCTION

ANALYTICAL studies dealing with the determination
of the temperature distribution in a fin with internal
heat generation are rarely to be found in the literature
[1-5]. This determination is of practical significance
in the field of nuclear engineering [1] and of scientific
measurements [6] (i.e. hot-wire anemometers and
resistance temperature transducers).

Assuming that the internal heat generation and heat
transfer coefficient are uniform, Minkler and Rouleau
[1] analytically derived the temperature distribution
in rectangular and triangular fins, and Liu [2] those in
optimum rectangular and circular fins. Hung and
Appl [3] presented approximate analytically cal-
culated temperature distributions in the fins with tem-
perature-dependent thermal properties and internal
heat generation.

For most practical applications, the heat transfer
coeflicient is not uniform but a power function of the
difference between the temperature of a heat trans-
ferring surface and that of the fluid surrounding this
surface. It is expressed by

h=ab )

in which a and » are constants. Typical values for n
are —0.25, 0.25 and 2 for film-type condensation,
natural convection and nucleate boiling, respectively.

The object of this work is the analytic derivations
of the temperature distributions in a straight fin of
rectangular profile or in a cylindrical fin with uniform
and non-uniform internal heat-generation charac-
teristics. To this end the heat transfer coefficient is
taken as that given in equation (1) wherein n = —1,
0, 1 and 2.

Initially, internal heat generation in the fin is

assumed to be constant and the temperature dis-
tributions in the fin and the fin effectiveness are deter-
mined as functions of dimensionless variables, and the
results obtained are presented in graphical and tabular
forms. An interpolation method is suggested for the
approximate determination of the temperature dis-
tribution in the fin and the fin effectiveness if # is a
fraction between — 1 and 2. For these values of #, the
temperature distribution in the fin cannot be ana-
Iytically derived even for the simple condition in which
no internal heat sources exist in the fin [7].

As a second step internal heat generation in the fin
is assumed to be dependent on the temperature of the
fin itself. This dependency is expressed in a polynomial
equation up to third degree and the temperature dis-
tributions in the fin are derived herewith.

DIFFERENTIAL EQUATION OF
TEMPERATURE DISTRIBUTION

A straight fin of rectangular profile or a cylindrical
(i.c. pin) fin is now considered. For the analysis of
such a fin, the following assumptions are made : one-
dimensional steady-state heat conduction through the
fin, constant thermal conductivity of the fin material,
negligible heat transfer from the fin tip and a constant
cross-sectional area for the fin. Internal heat gen-
eration in the fin is either constant or dependent on
the temperature of the fin. The temperature of the
fluid surrounding the fin is constant. The origin of the
space coordinate x is at the fin base and positive x is
toward the fin tip. The straight fin is infinitely long in
the longitudinal direction. A unit length of this fin
in this direction is being considered here. The heat
transfer coefficient is given by equation (1).

For the assumptions made, the non-dimensional
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4 cross-sectional area of a fin {m?]

a a given constant [W m =2 K¢+ "]

d;,...,ay constants defined in the text

Bi modified Biot number at the base of a fin

b modified fin parameter

C integration constant

d,d, constants defined in the text

e,...,es constants defined in the text

F(uf«) Legendre’s normal elliptic integral of the
first kind

f fin effectiveness

G rate of heat flow from a fin {W]
g..-.,g3 constants defined in the test
Wo3? Wm3 K, Wm*K™?
and W m~?* K3, respectively]

heat transfer coefficient [W m™2 K]
thermal conductivity of the fin material
Wm 'K

fin length [m]

constants defined in the text
generation number

a given constant

circumference of a cylindrical fin [m]}
a constant defined in the text
internal heat generation [W m~?]
..,q, constants defined in the text
,...,33 constants defined in the text

Nk’
3

NSOV zg™

NOMENCLATURE

Wm3Wm?K ' Wm3K™?
and W m™3 K%, respectively]

Sa4...,8; constants defined in the text
T dimensionless temperature
t temperature [K]

U half fin thickness [m]

W  aconstant defined in the text [m]
X dimensionless space coordinate
x space coordinate [m]

Y,Z constants defined in the text.

Greek symbols
o modular angle [rad]
B a root of a polynomial equation
Y,...,73 constants defined in the text
0 the difference between the temperature of
a fin and that of the fluid surrounding
it at point x [K]

7 amplitude [rad].

Subscripts
b refers to the fin base (i.e. x = 0)
e refers to the fin tip ie. x = L)
f refers to the fin
i anindex (i = 1,2,3..)
v refers to the fluid.

differential equation of the temperature distribution
in the fin then becomes
4T
Ve —bTy"TU* D = ~bNT,. 2)

The boundary conditions are expressed by

T=T,=0,/6, forX =0 3)
and
8, dT
—ZEX,-.O forX = 1. 4

The non-dimensional parameters used in equations
(2)+4) are defined as

T=6/8, (5)

X =x/L ®)
_L°h, _al’6;

b=k = wk ™

N QW _ oW @

= b, abf+h

in which

W=1U for the straight fin C))]

and
W= AlP (109)

In accordance with the first boundary condition
expressed in equation (3), the temperature difference
at the fin base is equal to 8,. The second boundary
condition explicitly implies that no heat transfer takes
place at the fin tip.

In order to solve equation (2), L, a, W, K, Q and n
are assumed to be known. 8, is the boundary value. 8,
is not an unknown value, but it can be determined
only after the equation has been solved. By definition
it is equal to 8,/T,. The foregoing implies that the
values of & and N in equation (2) can be determined
before solving it and the value of T, after solving it.

The value of b given by equation (7) is the modified
fin parameter. For the condition where n =0 (i.c. a
constant heat transfer coefficient), the square root of
b (i.e. fin parameter or aspect number) is widely used
in studies dealing with extended surfaces.

The value of N given by equation (8) is the gen-
eration number. It is the ratio of the total heat gen-

for the cylindrical fin.
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FiG. 1. Ty, as a function of b and N forn = —1 and 0.

erated in the fin to the heat that would be dissipated
from the fin if all of the fin was at the base temperature
[1]. Accordingly, if N = 1 then all the heat generated
in the fin is transferred to the fluid surrounding the
fin, the temperature of the fin becomes uniform and
no heat is conducted into the fin at its base since
dT/dX = 0. Therefore, it follows from the foregoing
that the generation number can only vary between 0
and 1. For N = 0, there is no internal heat generation
in the fin, and for N = 1 internal heat generation in
the fin is maximum.

SOLUTION OF THE DIFFERENTIAL EQUATION
FOR UNIFORM HEAT GENERATION

In the case where n = —1

In this particular case, the right-hand side of equa-
tion (2) and the second term on the left-hand side
are constants. The solution of this equation, which
satisfies the boundary conditions expressed in equa-
tions (3) and (4), is then a straightforward matter and
the dimensionless temperature distribution in the fin
is given by

b
7= Tb(E(I—N)(X2—~2X)+1>. (1
From the above equation T, (or 8,) is calculated using
the condition that T =T, = ] for X = 1

0, b -
(1— E(1~-N)) )

—6—; —

Thus it follows from equations (11} and (12) that T
has only one value if the values of b, N and X are
fixed. The dimensionless temperature at the fin base,
T\, is shown as a function of b and N in Fig. 1. In this

T, = 12)

figure, the asymptotic behaviour of T, is obvious.
In accordance with equation (12), an increment in
b(1 — N)/2 increases T,. However, the maximum value
of b(1 — N)/2 should be less than 1. If (1 —5(1 — N)/2)
is zero, 6, also becomes zero (ie. 6,
8,(1—-b(1—N)/2)), and T (or T,) is not defined. The
foregoing implies that for a given value of N, the
maximum value of 4 is determined by one of the two
following inequalities derived with equation (12) and
with the definition of the generation number :

2
b<]"-j for0KN<1 (13)
and
O<b<w for N=1. (14)
For n = —1, the heat flux on the surface of the fin

all along its length is constant and is equal to a (see
equation (1)). In accordance with equation (11), the
temperature in the fin is constant when N =1,

-

In the case wheren = 0

In this particular case, the heat transfer coefficient
is constant and equation (2) becomes a linear second-
order differential equation with constant coefficients.
The right-band side of the equation is constant. The
solution of the equation is taken from an appropriate
textbook [8]. Thus the dimensionless temperature dis-
tribution in the fin, which satisfies the boundary con-
ditions expressed in equations (3) and (4), is given by

cosh {{/b(1—X)}

r= Tb{(l -V cosh /b

+N}. (15)

From equation (15) T, (or ,) is determined using the
condition that 7= 1 for X = 1
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1
+N) . (16)
It follows from equations (15) and (16) that T has
a single value if the values b, N and X are fixed. The
dimensionless temperature at the fin base, T, is shown
as a function of b and N in Fig. 1. In this figure the
asymptotic behaviour of 7, is obvious if 0 < N < 1.
For a given value of N and for comparatively small
values of b, an increment in b increases T,. If b is
increased beyond a certain value, T, approaches 1/N.
If N =0 the magnitude of T, is not restricted, as
can be deduced from equation (16). 1t follows from
equation (15) that the temperature in the fin is con-
stantfor N=1(e. T=T,= 1)
Contrary to the case analysed for n= —1, no
restriction applies to the magnitude of pfor0 < N < 1
ifn=0.

In the case where n = |

In order to calculate the dimensionless temperature
distribution in the fin for this case, equation (2) is
integrated twice. The first integration of this equation
can be carried out in accordance with the procedure
explained in ref. [7]. Omitting the details, the result of
this integration including the determination of the
integration constant {using the boundary condition
given in equation (4)) is presented below for all values
of nexcludingn = —2

2b
_____ e <2 penptne2)
{n+2Tb (T

0.5
+{n+2INTE {1 = T}mi)} )

For n=1 and after rearrangement, equation (17)
reduces to

dT
AT+ ANTE(1 =T — s = ~dX  (18)
in which
2b
TTary (19)
The integration of equation (18) yields [9]
mF(ufo) = = X+C )

where F(u/a) is Legendre’s normal elliptic integral of
the first kind. Its value is determinable if the amplitude
u and the modular angle « in it are known. g is a
function of T and o is a constant. In ref. [10] F{u/a)
is tabulated for 0 < p < #/2, and is given as an infinite
series for 0 < u < = in refs. {7, 9].

After the determination of the integration constant
C in equation (20) (using the boundary condition
expressed in equation (3)), the dimensionless tem-
perature distribution in the fin becomes

mF(pfa) = — X +mF(pfx). @1

H. C. UnaL

In order to utilize equation (21), only p = u(T), m
and « should be calculated since u, = (7). For this
purpose the roots of the cubic equation in equation
(18) are required. These roots are expressed by

Bi=1 (22)

and

Bry= —0.5+(3NT2~0.75)°5. 23)

For the evaluations of f#, and fi;, the value of T,
should be known. This value is determined using the
equation given below, which is obtained from equa-
tion (21) using the condition that u = g, for X = 1

mF(pyfo) —mF(pe/e) = 1. @4

If all the three roots of the cubic equation are real and
B\ > B, > B, the formulae to calculate u(T"), m and
o are presented below. These formulae are adapted
from those given in ref. [9] and their derivations are
therefore omitted here

“"T 0.5
i = arcsin {(g’ T) } forO0<u<n/2
—

(25a)
m=2{y(f,—B3)} " (26a)
= arcsin {(??:ﬁj)ﬂs} (27a)

H, and p, are obtained from equation (25a), noting
that g=p, for T=T, p=p, for T=7,=1 and

B( ]
b 382 Tb

i, = arcsin 0 = 0.

(28a)

(29a)

For . = 0, F(u/o) becomes zero ; accordingly equa-
tion (24) reduces to
mF(pfo) = 1. (30a)
If the cubic equation has one real and two complex
roots, the formulae to calculate u(7T'), m and o are

) forO<u<sn

# = Brceos T—r+Mtan Z
(25b)
4))M3 - 0.5
m= —M(tan Z-+cot Z) {mzj} (26b)
a=2Z (27b)
in which

M
tan 27) = E——r for0<2Z <n. (31

=

In order to derive M and r in i, m amd &, the cubic



Temperature distributions in fins

equation in the denominator of equation (18) is ex-
pressed as

WT—D(T?*+T+1-3NTD)
=pT-D{(T-*+M*. (32)

The last term on the left-hand side of equation (32)
should be identical to the last term on the right-hand
side. This yields

r=—0.5
M = (0.75—3NT)"5.

(33)
(34)

By definition, M should always be a positive number
and r a real number. From equation (25b) g, is pre-
dicted using the condition that p = u, for T=T,

(28b)

T,—r—Mcot Z
T,—r+Mtan Z/)’

Wy, = arccos (

In order to calculate g, first the values of r and T for
X =1 (e r=—0.5and T, = 1) are introduced into
equation (25b). Thereafter the resulting numerical
value (i.e. 1.5) both in the numerator and the denomi-
nator of the fraction in this equation is replaced by
Mjtan (2Z) as calculated with equation (31) (i.e.
Bi=1and r=—0.5). If tan (2Z) and cot Z in the
present equation are expressed as a function of tan Z,
the equation produces the value of y, after rearrange-
ment

u, = arccos —1 =m. (29b)
For py. = m, equation (24) reduces to
mF(up/a) —mF(nja) = 1. (30b)

Relative to equations (25)—(30), the a-versions of
the equations are valid if the cubic equation has three
real roots and 1> f§, > ;. The b-versions of the
equations are valid if the cubic equation has one real
and two complex roots. The c-versions of the equa-
tions will apply in the case where n = 2.

If the cubic equation has three real roots and if
one of these roots is greater than I, the solution of
equation (2) is again expressed in equation (21); this
solution however appears to be trivial [9]. Therefore,
the formulae to predict u(T"), m and o are not given
here. The foregoing will be further clarified whilst
presenting T, as a function of # and N.

In order to calculate the dimensionless temperature
in the fin, only the value of T, is required. For the
determination of 7, the following procedure is
adopted. A value for T, is assumed so M or f§, and
B, are then known. The value of m, a and p, is
predicted with equations (26)—-(28), respectively.
Using the values of a and p,, F(u,/a) is determined
from the tabulated values of F(u/«) (or from the
analytic expression of F(u/a)). Also F(ugy/o) is deter-
mined from equation (30). The value of T3, is iterated
until the calculated two F(u,/a) values are identical.

Having found Ty, the evaluation of T for a given
value of X is carried out with equation (21). To this
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end, first F(u/a) is determined with this equation since
the values of m, a, X and F(u,/a) are known. There-
after the value of u, which satisfies this F(u/a), is
obtained from the tabulated values of F(u/a) or (from
the analytic expression of F(u/a)). T is then predicted
with equation (25).

For the evaluation of X for a given T (ie.
T,=2T21), pis first solved from equation (25),
thereafter F(p/a) is solved from the tabulated values
of F(u/a) (or from the analytic expression of F(u/a)),
and finally X is solved from equation (21). The fore-
going method seems simpler than the previous one.

If the vatues of b and N are fixed, the value of T,
is determined. Since T, > T = 1, T has only a single
value if the values of b, N and X are fixed. The values
of T for X = 0, 0.25, 0.50 and 0.75 were calculated as
a function of » and N. The results obtained are tabu-
lated in Table 1. For X =1, T = 1. The values of N
were taken equal to 0, 0.25, 0.50 and 0.75. For N = 1,
T = T,. The calculations were carried out on a pro-
grammable desk calculator with 224 program steps.
In order to predict F(u/«), the analytic expression of
F(u/o) was used. This expression is an infinite series.
For large values of « and p, the Gauflische trans-
formation [9] was used to reduce the values of o and
u; consequently the number of terms needed to cal-
culate the foregoing series was very small. If « and p
are greater than 897/180 rad and if F(u/«) is evaluated
from the tabulated values of F(u/x), the GauBlsche
transformation is also needed since F(n/2/n/2) is infi-
nite.

The dimensionless temperature at the fin base, T,
is shown as a function of b and N in Fig. 2. In this
figure, the asymptotic behaviour of T, is obvious if
1> N>0. For a given value of N and for com-
paratively small values of b, an increment in b increases
T,. If b is increased beyond a certain value, T
approaches asymptotically to 1/\/N (sec also Table
1). For 1/\/N > T, > 0.5/\/N, B, and B, are real roots
and 1> f,> f; (see equations (22) and (23)). If
T, =1/\/N, B, =1, and F(p/o) and F(py/a) become
infinite (i.e. p = u, = o = n/2). For f,=f,=1 the
dimensionless temperature which is obtained from
equation (25a) reduces to

B8 sin” _

T=—-"-5—=1

1—sin® u (33)

Thus the temperature in the fin is constant and conse-
quently no heat is conducted into the fin at its base.
Accordingly T, is always less than 1/,/N and 8, less
than 1. For N = 0, u, given by equation (28b) becomes

Tb—-2.732). 36)

Hp = arccos <m

In accordance with equation (36), no restriction
applies to the magnitude of T, for N =0 since p,
varies between = and 0 if 1 < T, < o0 and « is equal
to n/12.

For N=1and T, =1, B, is equal to 1 and the
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i 1
a7=§(51+ﬁz)as—§(ﬁl—ﬁz)as (44
as=f,—a,+ay, (45)
as=f—a —aya, (46)
a4 _ agi“(a§+ I)OAS (47)
o a§+(ﬁ.—al)(ﬁz—al)_ (48)

a)Bi—B2)

In order to derive a, and a, in a;—a,, the fourth-
order polynomial equation in equation (37) is ex-
pressed as

PW(T=I(T=B){T*+(Bo+ DT+B3+ B2 +1}
=y(T-D(T-B){(T—a)’+a3}. (49)

The last term on the left-hand side of equation (49)
should be identical to the last term on the right-hand
side. This yields

a;= —(B+1)/2 (30)
ay = (3B3+2B,+3)*%/2. (51

By definition, a, >0 and y,a,<0. As will be
explained later u, m, « and a,—a, are valid if §, < 1.

From equation (25¢) g, is evaluated noting that
u=p for T=T,

ag—agTy
1y = arccos | ———— |J.

P (28¢)

From equation (25¢) , is determined using the con-
dition that p = g, for T =T, = 1, introducing this
value of T, the value of 8, and as—a, given by equa-
tions (46)-(43) into equation (25c) and after the
rearrangement, the latter equation yields

U, = arccos —1 = m. (29¢)
For u, = n, equation (24) reduces to
mF (/o) —mF(njo) = 1. (30c)

The determinations of Ty, T for a given X and X

for a given T are carried out with the procedures
adopted in the case where #n = 1. As noted earlier, the
c-versions of equations (25)30) apply in the case
where n = 2.

If the values of b and N are fixed, the value of T,
is determined. Since T, = T > 1, T has one single
value if the values of b, N and X are fixed. Values of
T for X =0, 0.25, 0.50 and 0.75 are tabulated as a
function of » and N in Table 2. Here N was taken
equal to 0, 0.25, 0.5 and 0.75.

The dimensionless temperature at the fin base, T,
is shown as a function of » and N in Fig. 2. In this
figure the asymptotic behavior of T, is obvious if
1> N>0. For a given value of N and for com-
paratively small values of b, an increment in b
increases T,. If b is increased beyond a certain value,
the value of T, approaches asymptotically to the value
of d, expressed in the equation

di =N~ (52)

If T, is smaller than d,, 8, is smaller than 1. If T,
equals d,, B, is equal to 1 and a; given by equation
(48) is not defined ; consequently ag—a, expressed in
equations (42)—(47) are also undefined. Therefore, the
temperature distribution in the fin cannot be predicted
with equation (21). As stated previously, 7, = 1 when
N = 1. It follows from equation (41) that the con-
dition in which T, = d, is identical to the condition
that N = 1. The foregoing implies that the tem-
perature in the fin is constant if T, = d,. Consequently
T, is always less than d, and 8, less than 1. If N =0,
B, is equal to —1 and o to =/4, and u, given by
equation (28c) reduces to arccos (—1/7,) which
implies no restriction on the magnitude of T, (i.e.
1 € T, < ). It is concluded from the foregoing that
128,2—-1ifl=2N2=0.

Some values of T are missing in Table 2. This
was because the desk calculator used to carry out the
calculations computed internally using each number
as a 10-digit mantissa and a two-digit exponent of 10
(see equations (47) and (48); f, ~ B,). In order to
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=2

Table 2. f,/Bi and dimensionless temperature in the fin as a function of dimensionless variables for 7

N =0.75

0.50

N=

0.25

N

= 0,75
T

0.50 X

T

025X

T

0X

X =
T,

SVBi

=0.75
T

0.50 X

T

0 X=025X
T

X =
T,

fJBi

=0.75
T

0 X=025X=050X
T T

X =
Ty

1B

= 0.75
T

0 X=025Xx=0.50X
T T

X =
Ty

fJBi

b

1.001
1.001
1.002
1.003
1.003
1.003
1.002
1.002
1.001
1.000
1.000
1.000

1.003
1.006

1.006

0072 1.011
1.013

1.001
1.003
1.005
1.007
1.008
1.008
1.007
1.005
1.004
1.001
1.000

1.000

1.006

1.012

1.013

1.023
1.030
1.085
1.132
1.181
1.207
1.233
1.246
1.252
1.259
1.260
1.260

0.144

0.203

1.002
1.005
1.008

1.012
1.015

1.008

1.019
1.031

1.019
1.043
1.073
1.114
1.159
1.181
1.196
1.195
1.186
1.144

1.072

1.035
1.078
1.136
1.220
1.325
1.390
1.465
1.514
1.540
1.576
1.587
1.587

0.217

1.003
1.006

1.011
1.011

1.026
1.059
1.104
1.173
1.270
1.340
1.444
1.537
1.607
1.790
2.046

2.233

1.047
1.107
1.193
1.331
1.540
1.706
1.974
2.243

0.289
0.409
0.503
0.583

0.10
0.25
0.50

1.024
1.040
1.060
1.078
1.087
1.094
1.098

0.101
0.122
0.138
0.146
0.148
0.149
0.149
0.149
0.149
0.149
0.149

1.028
1.046

0.306
0.374
0.429
0.464
0.475

1.026
1.045
1.073

1.111

1.009
1.013
1.014

1.022
1.030
1.037
1.038
1.035
1.031

1.020
1.028
1.034
1.035
1.032
1.026
1.021
1.010

0.247

1.068
1.087
1.093
1.092
1.085
1.076
1.051

0.281
0.300
0.305

1.048
1.064

1.071

1.018
1.027
1.033
1.041
1.048
1.053
1.064
1.077
1.086

0.641

0.664
0.683

1
2
3
5

1.014
1.012
1.009
1.007
1.003

1.027
1.017

1.099
1.100
1.100
1.100

0.308
0.308
0.309
0.309
0.309
0.309

1.016
1.016
1.014
1.012
1.006
1.001
1.000

1.072
1.067
1.060
1.036
1.010

0.482
0.485
0.486
0.486
0.486

1.138
1.174
1.206
1.229
1.284
1374
1.397

2.470
3.175
4.577
6.156

0.693
0.698
0.704
0.706
0.707

1.5
10
20
50

100

0.486
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determine these values, a double precision computer
is required.

Fin effectiveness

The fin effectiveness is a proper criterion for the
evaluation of the performance of a heat transfer sur-
face with and without a fin. It is defined by

dé 6./dT
"‘(a“) "KZ(@?LO

I==hby T Thé

(53)

where the numerators give the heat flux and the
denominators the heat flux at the surface in the
absence of the fin.

In order to calculate f for any value of n excluding
n = —2, the temperature gradient given by equation
(17) is introduced into equation (53). After rearrange-
ment and considering that T = T, for X = 0, the latter
yields

f¢Bh={

2(Tg;+2)+{n+2} {1 _Tb}NT'gz-i- l)_}) 0.5
(n_*_z)TgH-z)
(54

in which
Bi = hW/K=abiW/K. (55

The definition of the Biot number given in the litera-
ture is identical to that expressed in equation (55).for
the straight fin but different from it for the cylindrical
fin.

The fin effectiveness is calculated with equation (54)
after T, is determined either with an analytic method
or with a numerical method.

As noted previously, T, has only one value if the
values of b, N and n are fixed. It thus follows from
equation (54) that f,/Bi also has one value if the
values of b, N and n are fixed. Therefore, taking N as
a parameter (i.e. N = 0, 0.25, 0.50 and 0.75), f\/Bi is
plotted against 4 in Fig. 3 for n= —1 and 0 and in
Fig. 4for n = 1 and 2. For N = 1, the fin effectiveness
is zero. This is deduced either from equation (53) (i.e.
dT/dX =0 for X =0) or from equation (54) (i.e.
T, =1).

Figures 3 and 4 reveal the conditions that for given
values of b, N¥ and Bi, an increase in n decreases the
fin effectiveness and that for given values of b, # and
Bi a decrease in N increases fin effectiveness.

It follows from the definition of the fin effectiveness
that for the cylindrical fin and the straight fin of unit
length in the longitudinal direction, the rate of heat
flow conducted to the fin from its base is equal to
AB.h. f. The rate of heat flow from the fin to the fluid
surrounding it is then given by

G = A(Ouhof+QL). (56)
Extrapolation of the results obtained

As can be deduced from the foregoing, 7 is a func-
tion of b, N, nand X. Accordingly, it is only a function
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T T T

- £(Bi)*S
07 |
I e forn=1
—=——— fornz=2

FiG. 4. f\/Bi as a function of b and N for n = 1 and 2.

of n if the values of b, N and X are fixed. Therefore,
if n is a fraction between — 1 and 2, the value of T for
this # can be determined with interpolation using the
values of T calculated forn = —1, 0, 1 and 2 and for
given values of b, N and X. In Fig. S, this interpolation
method is illustrated for the prediction of T, for
n= —0.5,04 and 1.6 whilst 5=1.2, N=0.15 and
X=0.

Since f./Bi is a function of b, N and n, a procedure
similar to the foregoing interpolation method can be
used for the determination of f./Biif n is a fraction
between —1 and 2.

In order to further verify the method proposed, the
following procedure was carried out. First for some
randomly selected values of b, N and n, the values of
T, and of f/Biwere calculated with the method. (For

the design engineer, the evaluation of T, and of
J+/Biare probably of the most practical significance.)
Thereafter these values were compared with those
predicted with a numerical method using equations
(2) and (54). The results obtained are tabulated in
Table 3 in which the columns designated I give the
errors in predicting T, and those designated II the
errors in predicting f/Bi. The error was based on the
value calculated with a numerical method, i.e. the
fourth-order Runge-Kutta procedure. If both, the
value of T, and of f./Bi are required, it is sufficient
to determine T, since f \/Bi can be evaluated with
equation (54) if T, is known. In this case, the error in
predicting f./Bi improves, as can be deduced from
the columns designated III in Table 3. The errors
given in this table seem acceptable for most practical



1474 H. C. UnaL

4
T
b N=015
b=12
2t
18
161 {
I
]
B : 1
I !
| I |
12+ | | |
i i I
I | I
! 1 |
1 P B ; 1l . LI
-2 -1 0 1 2

F1G. 5. Determination of T, if n is a fraction between —1
and 2.

applications. If n is a fraction between —1 and 0 and
b is greater than 2/(1—N) (see equation (13)), then
the method proposed should fail to yield T, or f./Bi.

SOLUTION OF THE DIFFERENTIAL EQUATION
FOR NON-UNIFORM HEAT GENERATION

A cubic relationship for heat generation

Internal heat generation in the fin is assumed to be
dependent on its temperature and this dependency is
expressed by

0 =gt +g:tt+9::+g (57

where g to g, are given dimensional constants. With
proper algebraic manipulations, equation (57) can be
reduced to

0 =S,0°+5,0°+S,0+S (58)
in which
S; =g, (59
S, =3g:t,+9, (60)
S| = 3g3t2+2gat,+9, (61)
S =gt} +gati+git.+g. (62)

In order to determine the temperature distribution
in the fin with non-uniform internal heat generation,
equation (2) will first have to be solved. (The boundary
conditions given by equations (3) and (4) hold good.)
To this end, Q expressed in equation (58) is introduced
into N defined by equation (8). Using this N and after
rearrangement, the first integration of equation (2),
which satisfies the boundary condition given in equa-
tion (4), yields

dT

- —dx
@ g T =g =T =120 - ¢

(63)

Table 3. Percentage error in the prediction of T, and of f,/Bi with the interpolation method proposed

N=035

N=0.15

n=0.14

n=20.6

n=16

n=04

n=1.5

n=—05

11

I

I

II

114

I

I

II

111

I

I

11

—-0.3 —0.7 —04

0.0
0.1
—0.1

—-0.2

0.2

—-0.3
—-0.1
-0.1

—-0.5

—-0.3
—13

—32

—-04
—0.1

0.0
—-0.4
—0.7

—0.6
-0.5
—04

1.2
54

14

0.0 0.0 0.1
—04

—-03

0.0
0.7

0.6

04
0.0

0.0

19

0.0
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where
0s= g (64
q; = 2bWS,/{3aT,0¢ "} (65)
g, = S.bW/(ab}) (66)
g, = 2bWST,[{ad¢+ "} (67)
q = 2b/{Tin+2)} (68)
C=(qatqg:+9:+9:—9)/2. (69)

and ¢g—q, are dimensionless constants.

With the exceptions of the conditions that
g3=¢,=0and n= —1 and that g;=¢, =0 and
n = 0, the solution of equation (63) is again given by
equation (21). 7, is determined from equation (24).
In order to utilize equations (21) and (24), u(7T), « and
m in equation (21) should be calculated. These depend
on the roots of the polynomial equation in the
denominator of equation (63) and can be evaluated
with the formulae presented herein if the numerical
values of g, g1, g2, 93, L, On, K, L, a, n and W are
known. One of the roots of this polynomial equation
is always equal to 1.

If the polynomial equation is a cubic equation, then
the conditions that it has three real roots and
I > B, > f5and that it has one real and two complex
roots are of practical significance as discussed pre-
viously for the case that n = 1 and Q is a constant.
First the cubic equation is reduced to

[T +e,T?+e,T+e] =0 (70)

where 7, and e-e, are dimensionless constants.

If the cubic equation has three real roots and
1> B, > B, u(T), m and a are given by equations
(25a), (26a) and (27a), respectively. The value of y in
equation (26a) is equal to y, in equation (70). Equation
(30a) and u, and p. expressed in equations (28a) and
(29a) hold good.

If the cubic equation has one real and two complex
roots, u(T), m and a are given by equations (25b),
(26b) and (27b), respectively. The value of y in equa-
tion (26b) is equal to y, in equation (70). M and r in
i, mand o are determined by establishing an equation
similar to equation (32). Equation (30b) and pu, and
U, expressed in equations (28b) and (29b) hold good.

If the foregoing polynomial equation is a fourth-
order equation, it is first reduced to

Pa[TH*+e T +e, TP +esT+eg =0 )

where y;, e;—e¢ are non-dimensional constants. One
of the roots of equation (71) is 1. If internal heat
generation in the fin is equal to zero, one of the remain-
ing roots becomes —1 and equation (71) reduces to
equation (39) provided that N = 0 in the latter. There-
fore, it is concluded that the case being dealt with is
similar to the case in which n = 2 and Q is a constant.
Accordingly u(T), m and o in equation (21) are given
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by equations (25¢), (26¢) and (27c¢), respectively. B, is
equal to 1 and §, is smaller than §,. y, in equation
(26¢) is equal to y; in equation (71). a, and a, in a—
a, are determined by establishing an equation similar
to equation (49). Equation (30c) and y, and yu, ex-
pressed in equations (28¢) and (29c) hold good.

The determination of the temperature distribution
in the fin is carried out in a manner similar to that
explained previously herein for the case whereinn = 1
and Q is a constant. The fin effectiveness is predicted
with equation (53).

A linear relationship for heat generation

If g, and g; in equation (57) are equal to zero
and if n = —1 and 0, the differential equation of the
temperature distribution in the fin (i.e. equation (2))
reduces to

% +8,7=3S; (72)

in which
S, =b0,WS,/a forn= —1 (73)
Ss=bT,(1—WS/a) forn= —1 (74)
S,= —b(1—WS,/a) forn=20 (75)
Ss= —bWST,/(al) forn=0. (76)

The boundary conditions expressed in equations (3)
and (4) hold good and Q is given by

0=S0+S )

where S is the part of the internal heat generation
corresponding to the condition that 6§ = 0. Accord-
ingly S, and S in this equation are positive. In equa-
tion (75) WS, /a is the ratio of the heat flux due to a
part of the internal heat generation to the total heat
flux at location x (i.e. WS,0/a,0) and it is always
smaller than 1. Consequently S, given by equation
(75) is always negative. Considering now the fore-
going, the solution of equation (72) is carried out in
accordance with ref. [8]. This solution, which satisfies
the boundary conditions expressed in equations (3)
and (4), is given by equation (78) when n = —1

T= <Th— §5> {cos (/S.X)

S
+tan /S, sin (/S X))+ 3—5 (78)
4
and by equation (79) forn = 0
S5\ cosh {/—S,(1—-X)} S
r=(1,-22 +20 (™
<b S4> cosh /- S, S (19

T, 1s determined using the condition that T= T, = 1
for X = 1. It is expressed in equation (80) forn = —1

T, = {(1—S¢) (cos \/S,+tan /S, sin \/S,)+Se} '
(30)
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and in equation (81) forr =0

G2

in which

6 oW, (82)

ws

Sy = a0, (1 — WS, ja)’ ®3)

SUMMARY/CONCLUSIONS

Temperature distributions in a straight fin of rec-
tangular profile (or in a cylindrical fin) with uniform
and non-uniform internal heat-generation charac-
teristics and non-uniform heat transfer coefficients are
derived analytically. The heat transfer coefficient is
assumed to be a power function of the difference
between the temperature of the fin and that of the
fluid surrounding it. The power of this function is
taken as being equal to —1, 0, 1 and 2. Non-uniform
internal fin heat generation is assumed to depend on
the fin temperature and this dependency is expressed
in a polynomial equation up to third degree.

The results obtained for uniform internal heat gen-
eration are reduced to tables and graphs for the con-
venience of the design engineer. For given values of
the modified fin parameter, the generation number
and the power in the heat transfer coefficient, these
graphs yield the fin effectiveness for a given value
of the modified Biot number and the dimensionless
temperature at the fin base. An interpolation method
is proposed to determine the dimensionless tem-
perature in the fin and the fin effectiveness if the fore-
going quoted power is a fraction between —1 and 2.
For given values of the modified fin parameter, the
generation number and the modified Biot number, an
increase in the said power decreases the fin effec-
tiveness. For given values of the modified fin

H. C. UNaL

parameter, the said power and the modified Biot num-
ber, a decrease in the generation number increases
the fin effectiveness. The asymptotic behaviour of the
dimensionless temperature at the fin base is illustrated.

The analytic solutions presented for the second-
order non-linear differential equations may also be
useful in other fields of engineering.
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DISTRIBUTIONS DE TEMPERATURE DANS DES AILETTES AVEC GENERATION DE
CHALEUR UNIFORME OU NON ET COEFFICIENT DE TRANSFERT NON UNIFORME

Résumé—On détermine analytiquement la distribution de température dans une ailette droite de profil
rectangulaire (ou dans une ailette circulaire) avec une génération de chaleur uniforme ou non et un
coefficient de transfert thermique non uniforme. Le coefficient de transfert est supposé étre une fonction
puissance de la différence entre la température de Pailette et celle du fluide environnant. La puissance est
prise égale a —1, 1 et 2. La génération de chaleur interne est supposée dépendre de la température de
I'ailette et cette dépendance est exprimée par un polyndme du troisiéme degré. Les résultats obtenus
pour la génération uniforme de chaleur sont présentés sous forme graphique et tabulée et une méthode
d’interpolation est proposée pour déterminer la température de l'ailette et Iefficacité de lailette si la
puissance est fractionnaire entre —1 et 2.
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TEMPERATURVERTEILUNG IN RIPPEN BEI EINHEITLICHER UND
UNEINHEITLICHER WARMEENTWICKLUNG UND UNEINHEITLICHEM
WARMEUBERGANGSKOEFFIZIENTEN

Zusammenfassung—Es werden die Temperaturverteilungen in einer geraden Rippe mit rechteckformigem
Profil (oder in einer zylinderférmigen Rippe) bei einheitlicher und uneinheitlicher innerer Wir-
meentwicklung und uneinheitlichem Wirmetibergangskoeffizienten analytisch hergeleitet. Es wird ange-
nommen, da8 der Warmeiibergangskoeffizient als Potenzfunktion der Differenz zwischen der Temperatur
an der Rippenoberfliche und der Temperatur des umgebenden Fluids dargestellt werden kann. Der
Exponent der Funktion nimmt dabei die Werte —1, 0, 1 und 2 an. Zur Beschreibung der uneinheitlichen
Wirmeentwicklung wird eine Abhéngigkeit von der Rippenoberflichentemperatur angenommen und diese
Abhingigkeit durch ein Polynom 3. Grades ausgedriickt. Die fiir gleichférmige innere Warmeentwicklung
gewonnenen Ergebnisse werden in tabellarischer und grafischer Form vorgestellt. Es wird ein Inter-
polationsverfahren vorgeschlagen, mit dem die Rippentemperatur und der Rippenwirkungsgrad bestimmt
werden kdnnen, sofern der vorab angenommene Exponent im Bereich zwischen —1 und 2 liegt.

PACIMPEAEJEHHUE TEMIEPATYPbI B PEBPAX C OJHOPOAHBIM B HEOJHOPOAHBIM
TEIJIOBBIAEJIEHHEM W INEPEMEHHBIM KO3®PUIIMEHTOM TEIIJIOITEPEHOCA

AnHoTauNs—AHAJIMTHYECKH MOJYYeHbI pacnpeneneHns TEMNEpaTyphl B NMPAMOM pebGpe mpsMOYroJb-
Horo npoduis (WIH B LHIMHAPHYECKOM pebpe) ¢ OMHOPOIHBIM M HEOAHOPOAHBLIM BHYTPEHHHM TEILIO-
BBIICJICHHEM H MNEpeMEHHBIMH KodbduimeHTaMH TemionepeHoca. Ilosmaraercs, ¥ro koaddummeHT
TenjonepeHoca ABJAETCS CTeNeHHOH dyHKuMeH pasHOCTH TeMnepaTyp pebpa u oxkpyxaroweil cpeasl ¢
nmokasaTeJieM creneHd paBabiM — 1, 0, 1 1 2. CuuTaercs, 4TO HEOAHOPOAHOE BHYTPEHHEE TEILJIOBBIACIIE-
HHE 3aBHCHT OT TeMNepaTyphl pebpa, 3Ta 3aBHCHMOCTB BHIPaXaeTcs NMOJMHOMAaMH HE BbILE TPeThbel
creneHn. [TonydeHHBIE pe3yJIbTaThl [UIA OJHOPOHHOIO TEIUIOBBIAEICHAA NpEACTABJIEHE Tabnuued u B
BHIE rpaMKOB; B ClyYae, KOTa NoKasaTeNlb CTENEHH JIEKHT B IHana3oHe oT —1 1o 2, a1s onpenene-
HHA TeMnepaTypbl pebpa H ero 3¢ ek THBHOCTH NPEIOKECH HHTEPIOJIAUMOHHBIA METO.
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